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This article investigates stress and induced temperature in an isotropic, homogeneous, ther-
moelastic half-space using a two-temperature generalized thermoelasticity model. The boun-
ding plane surface of the present half-space continuum is subjected to a non-Gaussian laser
pulse. Laplace’s transform space is considered to deduce a closed-form solution to the pro-
blem. In addition, the inversions of Laplace’s transformations have been carried numerically
to obtain field quantities in the transient state. The effects of parameters of two-temperature,
laser-pulse and laser intensity are investigated. A concluding remark for the graphical forms
of the derived expressions is presented.
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1. Introduction

The one-relaxation theory of generalized thermoelasticity has been introduced by Lord and
Shulman (LS) (1967). The heat equation of LS theory is of the wave-type to ensure finite speeds
of propagation for heat and elastic waves. In fact, this theory eliminates the paradox inherent
in other classical thermoelasticity theories. These theories predict infinite speed of propagation
of heat waves contrary to physical observations. Two additional generalizations to the coupled
classical theory of thermoelasticity are presented. Müller (1971) considered some restrictions on
the constitutive equations by proposing entropy production inequality which is not enough and
need to be modified. Green and Laws (1972) proposed a generalization of Müller’s inequality.
Moreover, Green and Lindsay (GL) (1972) obtained an explicit version of constitutive equations.
In fact, the GL theory contained two constants that acted as relaxation times. These thermal
relaxations modified not only the heat equation but also other governing equations of the coupled
thermoelasticity theory. In other way, Tzou (1995) produced a dual-phase-lags thermoelasticity
theory which is considered as another generalization to the coupled thermoelasticity one.

The two-distinct-temperature model is formulated by Chen and Gurtin (1968), Chen and
Williams (1968) and Chen et al. (1969). There is no difference between two temperatures in
the absence of heat supply in the time-independent situation (Chen et al., 2004). While in the
presence of the heat supply, this difference is proportional to it. However, for the time-dependent
situation, these temperatures are different regardless the presence or absence of the heat supply.
The two temperatures are related to strain in the case of a traveling wave plus throughout the
medium (Boley and Tolins, 1962). Warren and Chen (1973) discussed the wave propagation
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problem via a two-temperature model of thermoelasticity. Additional investigation about the
two-temperature model is given by Zenkour and Abouelregal (2014a). In addition, Abouelregal
and Zenkour (2017) used the two-temperature model to deal with some problems in the half-
-space or a semi-infinite solid induced by pulsed laser heating and the micropolar thermoelastic
media. Recently, Zenkour (2018) presented a refined two-temperature multi-phase-lags theory
for the thermomechanical response of microbeams.
The laser-induced vibrations and thermoelastic wave induced by pulsed laser heating was

the subject of many investigators (Welsh et al., 1988; Wang and Xu, 2001; Sun et al., 2008;
Kumar et al., 2015). Recently, Al-Lehaibi (2016) studied the induced temperature and stress
fields in an elastic infinite medium with a cylindrical cavity under the two-temperature theory.
Moreover, Allam and Tayel (2017) investigated the thermoelastic behavior of a semi-infinite
medium heated uniformly by a laser beam having temporally Gaussian distribution.
The present work used the two-temperature generalized thermoelasticity model to investi-

gate thermal field quantities in an elastic half-space. A non-Gaussian laser beam with pulse
duration of two picoseconds heats the bounding plane surface. The Laplace transform space is
used to obtain an analytical solution of the problem. The inverse Laplace transforms are nu-
merically presented using the Riemann sum approximation method. Numerical estimations of
two temperatures, displacement, stress and strain distributions are discussed. The derived field
quantities are numerically obtained and the results are graphically presented. Effects due to the
parameters of two-temperature, laser-pulse and laser intensity are investigated.

2. Basic equations

The governing equations are represented according to the classical linear dynamical thermoela-
sticity theory as

Kϕ,ii = ρCE
(

1 + τ0
∂

∂t

)∂θ

∂t
+ γT0

(

1 + τ0
∂

∂t

)∂eij
∂t
−
(

1 + τ0
∂

∂t

)

Q

(λ+ µ)ui,ij + µui,jj − γθ,i = ρüi

(2.1)

where eij = (ui,j + uj,i)/2 denotes the strain tensor in which ui represent components of the
displacement vector, γ = (3λ + 2µ)αt, in which λ and µ denote Lamé’s coefficients and αt is
linear thermal expansion. The thermodynamical temperature is denoted by θ = T −T0 in which
T0 represents the reference temperature. In addition, Eqs. (2.1) includes such parameters as K
which denotes thermal conductivity, CE – specific heat at constant strain, Q – heat source,
τ0 is thermal relaxation time, ρ is material density, and ϕ denotes conductive temperature that
satisfies the expression

ϕ− θ = bϕ,ii (2.2)

where b > 0 is the parameter of two-temperature. It is to be noted that as b → 0 and ϕ → θ,
the 1TT is recovered.
The constitutive equations are given by

σij = 2µeij + λekkδij − γθδij (2.3)

where σij represent stress components.

3. Formulation of the problem

Consider a homogeneous isotropic thermoelastic conducting solid occupying the half-space x  0.
It obeys Eqs. (2.1)-(2.3) without considering body forces and magnetization. The present half-
-space is uniformly irradiated on the bounding plane x = 0 by a laser pulse with a non-Gaussian
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temporal profile. The system is initially quiescent, i.e. the state functions are temperature-
-independent.
The displacement field for the present one-dimensional medium can be represented by

ux = u(x, t) and uy = uz = 0. So, e = exx = ∂u/∂x represents the unique strain component. In
addition, the heat conduction equation is written as

K
∂2ϕ

∂x2
=
(

1 + τ0
∂

∂t

)[ ∂

∂t
(θ + γT0e)−Q

]

(3.1)

and the constitutive equation is simplified to be

σxx = σ = (λ+ 2µ)e− γθ (3.2)

The equation of motion is represented as

(λ+ 2µ)
∂2u

∂x2
− γ
∂θ

∂x
= ρü (3.3)

or may appear as

∂2σ

∂x2
= ρ
∂2e

∂t2
(3.4)

The two temperatures are related to each other by

ϕ− θ = b
∂2ϕ

∂x2
(3.5)

To simplify the governing equations of the problem, we used the dimensionless variables

x′ = c1ηx u′ = c1ηu τ ′0 = c
2
1ητ0 t′ = c21ηt

θ′ =
γθ

ρc21
ϕ′ =

γϕ

ρc21
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σ

ρc21
Q′ =

Q

Kc21η
2T0

(3.6)

where c1 =
√

λ+ 2µ/ρ denotes longitudinal wave speed and η = ρCE/K denotes thermal
viscosity. Hence, one gets

∂2ϕ

∂x2
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(

1 + τ0
∂
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∂t
+ ε
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−Q
)
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ϕ− θ = β

∂2ϕ

∂x2

(3.7)

where

ε =
γ2T0
ρ2CEc21

β = bc21η
2 (3.8)

Let us suppose that the medium is uniformly heated by a laser pulse with a non-Gaussian
form temporal profile (Sun et al., 2008; Zenkour and Abouelregal, 2014b)

I(t) =
L0t

t2p
exp
(−t

tp

)

(3.9)

where tp denotes the characteristic time of the laser-pulse, L0 represents laser intensity which is
defined as the total energy carried by a laser pulse per unit area of the laser beam (Sun et al.,
2008). So, the energy heat source Q(x, t) near the surface is given by (Sun et al., 2008)

Q(x, t) =
1−R

δ
exp
(x− h/2

δ

)

I(t) =
RaL0
δt2p
t exp
(x− h/2

δ
−
t

tp

)

(3.10)

in which δ denotes absorption depth of heat energy and Ra denotes surface reflectivity. When
x = 0, the laser pulse lies on the surface of the medium and then the energy source is reduced
to be a function of dimensionless time as

Q(t) =
RaL0
δt2p
t exp
(−h

2δ
−
t

tp

)

(3.11)



634 A.E. Abouelregal, A.M. Zenkour

4. Solution in Laplace’s transform domain

It is well known from now that the Laplace transform is defined by

f(s) =

∞
∫

0

f(t)e−st dt (4.1)

If it is applied to Eqs. (3.7), we obtain differential equations

d2ϕ

dx2
= s(1 + τ0s)θ + εs(1 + τ0s)e−G(s)

d2σ

dx2
= s2e σ = e− θ θ = ϕ− β

d2ϕ

dx2

(4.2)

where

G(s) =
ε2t
2
p(1 + τ0s)

(1 + st2p)
2

ε2 =
γRaL0
Kc1δt2p

e−h/2δ (4.3)

Eliminating θ from Eqs. (4.2), one obtains

( d4

dx4
−A
d2

dx2
+B
)

{ϕ, e} = {−F (s), 0} (4.4)

where

A =
s2(1 + β) + α1(1 + ε)

1 + β(1 + α1ε)
B =

s2α1
1 + β(1 + α1ε)

F (s) =
s2G(s)

1 + β(1 + α1ε)

(4.5)

The solutions to Eq. (4.4) take the following forms

ϕ = −
F (s)

B
+A1e

−m1 +A2e
−m2 e = B1e

−m1 +B2e
−m2 (4.6)

where Ai and Bi are some parameters given in terms of s. From Eqs. (4.2), one can get the
following relation

Bi = −
βm4i −m

2
i

m2i − s
2
Ai = ΩiAi i = 1, 2 (4.7)

Thus, one gets

e = Ω1A1e
−m1 +Ω2A2e

−m2 (4.8)

Substituting Eqs. (4.6) and (4.8) into Eqs. (4.2), one obtains

θ = −
F (s)

B
+ (1− βm21)A1e

−m1 + (1− βm22)A2e
−m2

σ =
F (s)

B
+ (Ω1 − 1 + βm

2
1)A1e

−m1 + (Ω1 − 1 + βm
2
2)A2e

−m2

(4.9)

The two parameters A1 and A2 can be given after applying the boundary conditions on the
boundary plane x = 0.
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4.1. Thermal boundary condition

At x = 0, we have ϕ(0, t) = 0 or (after applying the Laplace transformation) ϕ(0, s) = 0.

4.2. Mechanical boundary condition

Also, at x = 0, we consider the traction-free case, then σ(0, t) = 0 or (after applying the
Laplace transformation) σ(0, s) = 0.
The above boundary conditions at x = 0 give the parameters A1 and A2 as

{A1, A2} =
F (s)

B[Ω1 −Ω2 + β(m21 −m
2
2)]
{−Ω2 − βm

2
2, Ω1 + βm

2
1} (4.10)

Finally, the solution in the Laplace transform domain may be written as
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So, the solution in Laplace’s transformation domain is completely obtained.

5. Numerical results

All functions in the Laplace domain should be inverted to the time domain through the sum

f(t) =
eζt

t

{1

2
f(ζ) + Re

[

N
∑

n=1

(−1)nf
(

ζ +
inπ

t

)]}

(5.1)

where i is the imaginary number unit and Re is used for the real part. For faster convergence,
numerical experiments have shown that the value of ζ that satisfies the above relation is given
in terms of time as ζ ≈ 4.7/t (Tzou, 1996).
The formula given in Eq. (5.1) is used to invert the Laplace transforms in Eqs. (4.11). The

field quantities are represented graphically along the axial direction. The material properties of
copper are considered in the numerical examples. These constants at T0 = 293K are given by:
K = 368N/(Ks), αt = 1.78 ·10

−5 K−1, CE = 383.1m
2/K, ρ = 8954 kg/m3, λ = 7.76 ·1010 N/m2,

µ = 3.86 · 1010 N/m2.
Computations are carried out along the x-axis with 0 ¬ x ¬ 1 for a small value of dimension-

less time t = 0.2. The following constants are assumed for the computation purpose, Ra = 0.5,
h = 0.1, δ = 0.01 and τ0 = 0.02. In addition, the laser intensity is given by L0 = c · 10

11 J/m2

where c is the laser intensity parameter.
Results are presented for two cases. The first one is to investigate how the non-dimensional

conductive temperature, thermodynamic temperature, displacement, stress, and strain vary with
different values of dimensionless temperature discrepancy β. Note that β = 0 indicates the one-
-dimensional temperature theory (1TT) as the old situation while β = 0.2 or 0.4 represents
the 2TT as new situations. In this case, one assumes that the characteristic time of laser-
-pulse is tp = 2 picoseconds and the laser intensity parameter c = 1. Figure 1a shows that the
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Fig. 1. Dependence of (a) displacement u, (b) thermodynamical temperature θ,
(c) conductive temperature ϕ, (d) thermal stress σ, and (e) strain e on the two-temperature

parameter β

displacement u increases along the x-axis for the two-temperature generalized thermoelasticity
theory (2TT) with β = 0.2 and β = 0.4 while it decreases for the old situation (1TT of L-S with
β = 0). It is to be noted that β has no effect on the displacement u for x = 0.6. Figure 1b shows
that the thermodynamical temperature θ increases as β increases. The relative error between the
results may decrease as x increases. Figure 1c shows that the conductive temperature ϕ increases
along the x axis and decreases as β increases. It starts from the zero value and terminates at
different values according to the value of β. Figure 1d plots the stress σ along the x-axis. It
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decreases with an increase of x and β. Finally, Fig. 1e shows that the strain e decreases along
the x-axis for the two-temperature generalized thermoelasticity β = 0.2 and β = 0.4 while it
increases for the old situation (β = 0). It is to be noted that β has no effect on the strain e for
x = 0.6. These figures show that β has a significant effect on all the fields.

Fig. 2. Dependence of (a) displacement u, (b) thermodynamical temperature θ,
(c) conductive temperature ϕ, (d) thermal stress σ, and (e) strain e on the time of the laser-pulse and

the laser intensity

The second case is to investigate how the results vary with variation of tp and c in the
case when the temperature discrepancy parameter remains constant β = 0.4. From Fig. 2, it
is found that the characteristic time of the laser-pulse tp and laser intensity parameter c have
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significant effects on the behavior of field quantities. For example, the displacement and stress
are decreasing with an increase of tp at a fixed value of c and with an increase of c at a fixed
value tp. However, the thermodynamic temperature, conductive temperature and strain are
increasing with an increase of tp at a fixed value of c and with an increase of c at a fixed value tp.
In addition, the displacement and both temperatures are increasing along the x-axis while the
stress and the corresponding strain are decreasing.

6. Conclusions

The present article investigates all fields in a thermoelastic half-space. A non-Gaussian laser
beam with pulse duration of two picoseconds is used to heat the surface of the half-space.
Governing equations are presented in the context of the model of two-temperature generalized
thermoelasticity. The Laplace transform technique is used to obtain the exact forms of conductive
temperature, thermodynamical temperature, stress, strain and displacement distributions in the
transformed domain. Effects of temperature discrepancy as well as laser-pulse and laser intensity
parameters on the field variables are investigated.

The results show that the two-temperature parameter plays a significant role in the behavior
of all field variables. In addition, it is found that the laser-pulse and the laser intensity parameters
have significant influence. The paper indicates that the model of two-temperature generalized
thermoelasticity presented herein describes the behavior of the particles of an elastic medium
more realistically than the one-temperature generalized thermoelasticity model.
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